
ReTeLL (April 2017), Vol. 17

~57~

Using Bayesian Classifier for E-mail Sorting

………………………………………………………………………….……………………………………………………………………………………………….…………………….

Dr. C. Muthu
Associate Professor, Department of Statistics

St. Joseph’s College (Autonomous), Tiruchirappalli

&

M. C. Prakash
PG Student

Bharathidasan University Institute of Management

Bharathidasan University, Tiruchirappalli

Abstract

Machine learning methods help us to draw valid conclusions from big data about

user experience, marketing, personal tastes and human behaviour. In this paper,

the Naïve Bayesian Classifier technique is used for sorting a variety of emails

received by SafeTrust, a NBFC client of Shalom InfoTech, which has many

divisions, such as Loan division, Deposits division, Insurance division and Chit

Fund division.

Key Terms

Big Data Analytics, Machine Learning, Bayesian Classifier, Clustering

Introduction

Big Organizations are immensely benefitted by the advanced statistical

techniques that are related to Big Data Analytics[1]. The successful

implementation of the advanced statistical algorithms on the big data is now

greatly facilitated by the Hadoop Ecosystem[2] . In this paper, the Naïve Bayesian

Classifier technique is used for automatically sorting the variety of e-mails

received regarding loans, deposits, insurance policies and chit funds by

SafeTrust, a NBFC client of Shalom InfoTech.

E-mail sorting by Bayesian Classifier

The Naïve Bayesian Classifier shall be used to solve the problem of recognizing

whether a document belongs to one category or another. For example, one’s inbox

shall be divided into social e-mails and work-related e-mails, based on the

contents of the messages. In this study, we wish to use this technique for

automatically sorting the variety of e-mails received by SafeTrust, a NBFC client

of Shalom InfoTech. It is a well-known fact that the words EMI, loan amount and

repayment period will occur often in the loan-related e-mails. Similarly, the

words premium, assured amount and policy period will occur often in the

Insurance-related e-mails.

ReTeLL (April 2017), Vol. 17

~58~

In order to use the naive Bayessian Classifier, we will first determine the

probability of an entire document being given a particular classification. In the

python program documentclass.py, we create a subclass of classifier called

naivebayes and create the documentprob() method that extracts the features and

multiplies their probabilities together to get an overall probability Pr (Document/

category).

 import re

 import math

 def sampletrainer (cla):

 cla.train (‘Please extend the repayment period of my loan’, ‘loan’)

 cla.train (‘I will pay this month's EMI on next monday’, ‘loan’)

 cla.train (‘Inform me the policy period of my Insurance policy’, ‘insurance’)

 cla.train (‘How can I enhance the assured amount of my Insurance policy?’,

 ‘insurance’)

 def getwords (doc):

 splitter = re.compile (‘\\w*’)

 words = [s.lower () for s in splitter.split (doc)

 if len(s) > 2 and len(s) < 20]

 return dict ([w, 1) for w in words])

 class classifier:

 def – init – (self, getfeatures, filename = None):

 self.fc = { }

 self.cc = { }

 self.getfeatures = getfeatures

 def incf (self, f, cat):

 self.fc.setdefault (f, { })

 self.fc [f].setdefault (cat, 0)

 self.fc [f] [cat] += 1

 def incc (self, cat):

 self.cc.setdefault (cat, 0)

 self.cc [cat] += 1

 def fcount (self, f, cat):

 if f in self.fc and cat in self.fc [f]:

 return float (self.fc [f] [cat])

 return 0.0

 def catecount (self, cat) :

 if cat in self.cc :

 return float (self.cc[cat])

 return 0

 def totalcount(self) :

 return sum(self.cc.values ())

 def categories (self) :

 return self.cc.keys()

 def train (self, item, cat):

 features = self.getfeatures(item)

 for f in features:

ReTeLL (April 2017), Vol. 17

~59~

 self.incf (f, cat)

 self.incc (cat)

 def fproba (self, f, cat):

 if self.catcount(cat) == 0 : return 0

 return self.fcount (f, cat) / self.catcount (cat)

 class naivebayes (classifier) :

 def documentprob (self, item, cat):

 features = self.getfeatures (item)

 p = 1

 for f in features : p * = self.weightedprob (f, cat, self.fprob)

 return p

We calculate now Pr(Category/Document) by using Baye’s Theorem as follows:

 Pr(Category/Document) =

 Pr(Document/Category) Pr(Category)/Pr(Document)

Here, Pr(Category) is the probability that a randomly selected document will be

in this category. So, it is just the number of documents in the category divided by

the total number of documents. Here, the calculation of Pr(Document) will be an

unnecessary effort, as the results of this calculation will not be used as a real

probability. Instead, the probability for each category will be calculated

separately, and then all the results will be compared. Since Pr(Document) is the

same no matter what category the calculation is being done for, it will scale the

results by the exact same amount. So, we can safely ignore that term. We now

add the proba() method to the naivebayes class for calculating Pr(Category/

Document).

 def proba (self, item, cate):

 catproba = self.catecount (cate) / self.totalcount()

 documentproba = self.documentprob (item, cate)

 return documentproba * catproba

The final step in building the Naive Bayes Classifier is actually deciding which

category a new document belongs to. The simplest approach will be to calculate

the probability of this item being in each of the different categories and to choose

the category with the best probability. The following classify() method will

calculate the probability for each category and will determine which one is the

largest.

 def classify (self, item, default = None):

 probabs = { }

 maxi = 0.0

 for cate in self.categories:

 probabs[cate] = self.proba(item, cate)

 if probabs[cate] > maxi:

 maxi = probabs[cate]

 best = cate

 return best

ReTeLL (April 2017), Vol. 17

~60~

Now, the entire code that we have developed so far is capable of classifying a

new document into the appropriate category. Here is a sample Python session:

 >>> reload(documentclass)

 >>> cla = documentclass.naivebayes (documentclass.getwords)

 >>> documentclass.sampletrainer (cla)

 >>> cla.classify (‘Will you please inform me the policy period of my insurance

 policy? ’, default = ‘unknown’) ‘insurance’

 >>> cla.classify (‘How can I pay my loan's EMI through online?', default =

 ‘unknown’) ‘loan’

References

 1. Jacques Bughin (2016). Big Data, Big Bang?, Journal of Big Data, 3(2):

1 - 14.

 2. Muthu, C. and Prakash, M. C. (2015). Impact of Hadoop Ecosystem on Big

Data Analytics, International Journal of Exclusive Management Research -

Special Issue, pp. 88-90.

 3. Wes Mckinney (2012). Python for Data Analysis. O’Reilly Press, USA.

	RETELL_2017_59.pdf
	RETELL_2017_60.pdf
	RETELL_2017_61.pdf
	RETELL_2017_62.pdf

